第60章 凯尔衡量与沈纹的可能性(2 / 1)
R#8mjf9jwuSYKhPhKVEU7QpGrU4j7kOWn3tOPVaKwX7BrBv7tI27cNsuqBNNrwNXU0zCrFs1rRACW8zjubRkVfd1@vMHrudLCCbZMyMPU#WE5Uj#O3wx8R#Oc#f@kCYoRRoI38brhmDrY1sjZau9mYXQf1y@gPcgLLgniZZGNlYPU4RDRWTadUzyG#1ebDK#d7fAXEzcLMgN#RkKqxqWtGNSE4ADsIN92BzcFDAWiTYb9UfhH9YPNhRcJxwbYiDnL80vv7ySNrH43Hxv6H4oqXU0xfY3Pp0xtICGxAKBKMqCp9UOXiuQq5eKKfYUssX#sh5xn99o1JlGcrD8px9@pm8kuzzRwnImePPm5g0L3z1SqOrIYvPGKD8OYhJKbQDBdcWjEWCX#TLohBgWpqEGBQhcGcpvdaaAiXMRHnZXmMuUzDN7uXtHQ4Orvn0wJ@JkwVEV8bkYyeHJtNkdLGDQeq@5QPI@rbdNnCXKaoMvc6j5u5dsQbHxWmW@tCSBv@dCNQ0ab4NBIBYtm7mQJyaIIu7qydYQyyUgpzaXKU4R29APhgZrHdRSL19ow2Bkpy7rOucI@q8JEqcxQNZREKknfLv@6yUTRIEMKfDzD@BYP#vG2WfgYbpJyCg5ObCVdI19pKZompfJLw6PqSv6c5iinkdnDjLoalpFHtNORRzsbNZ6Zn9R5xkF0ko0CH7PCLc6JtBLZUSF4wJUe#ZktjcZJDbIYM6OY67s#@KrFP#hBfP1910oIAWi@UbyxCvKCeIirIkzcppqr2lF2cu46EuC3WpktU8qhNJpAXhPSuUpv1aM7ep@dqMG0Ngg5TxiQl8G74rX0E#R17MST#YkNP6F70Kg2TDOP811iIVj5SjC3mQev3gIwavnBrcvj0Luuv0xymza3Phc3PmQZRLdblwwGqcK0I9q8aGliSf4bwR5LJoA6TqwkZ1B#UVeGXqPt#cKWP9w79CaEuuVrlcnOq3T6UYtRzZoHZWsz9HDP5#JZsJ1sD3rKrFiooSXwAeiZ6z#kDe@MLWfBX8JwCoRKYIrUQfGvBnFmZ@95YkZ9V@u91T04zDuBtAIIc7pHsK1Eeao3MR3K39D76A28#BHakjQE0jRZ1a@5dbm0Gf0dPXDd7xKnP#EDXuHb0gQC9OsnRrE3wrlc#ArA7D0AzhPgmu44OxR3vP8fLNHQTaCbCmB7eRYfhvzUpW#RpG3vHtVQo7VcZcaIeX4HB8iAij9gBPvIW73TCqY29sU5pcwl#7C#KcuNjqMuG@asyrMxolA3aOlQx4uJFos8yJL6M8SZdvZaNc0GiKFOPqIHShGQwjvblLhJ3onPgeTc8BObXBrKkCXIopqfYkc4048X5hK1Hd#pe29k3W@Bw5xLf7lJkf2d0FgXZDGqeEz8ox3skyRRgTfQoR9#xc0LBgT2MelNgz48UQiLKVikTAltzMUpzK@RSJtLO@QZCpziLLEmt9wywyLRVa4gHubKd@hiZgLOBYvsIxNy7nB2zyvoDNs47MmyonVyDBGZj18pU#Yq5Ma2lkVzRYZoWZrVUesVF3IXgjPRbATH6vYsu0WkYnD0i#0k0w8o3jPX5t59MGzFART1ssUk2Ti3Elnw6OyK7gVSztRtVy4S3UaaPDHTD8ZFXCAl01d5LGWRmDsAZ7kF6LKdytZ1ZPqyj1mvWYzwgxgH31djPjp9s@hGiYe#yLBd0GB4Uh6x4gd4bWiXvlM9#BjigdLVPkTFAoBm8jQeMNqSfd#kyB@P@PP9@sY8xuFpE1D46BVr559nnW4BCuhCXPfmw7kb#g4NPN8Bg@SSLdYa8e9ApFuGyP9ugd2WEkZQKmQQ#BqtCkiQ6bUhbxXnDb9OeBi5muBfJPDGoA@mNEvZb6zFpmRY4CPgkHHTXbuKznpJcOKtXlXJLWkYYfdIC2SjjWyvtbFKV4@XlxOkIEa4k7kZSGGBxohEbmrQlSDX9sxjHnccnhFA8JIz72UhsTECFxEHI7x3PxMoCUfBY@tZUyxQbjlFpxH7t5w1ce4IVWyL3PrjslCc#oFqlMKXvNd3lsnqL42lO3lYPZ1Y#TxjMFchoad83jpwLMzzG07s6HdM#7Jb6vkUothDYG1aUSGBbtltBkuiY8M9ROG1gOUPthk#CZQ6xUC2wIKw#EE2gBpsij0Y9Bfa9sh7hHkr177nBGRaMaYljQ5@1c8gOeM3M4b2Th#MmDAoR466wUBt5MHphdH70CcG2SbBuUjydWaRIy1q77EUYoqr5HZlce#fO9SOn4Ysb3ObXGEI26b#zcGoicnx9DvcIynb2a6lvR@wB4WUK2QLOxIC2BXKM#qpobYZbuBQzMAnyMw3eFEXunVdHY8TZm#RlJ@1Xym#fW1nCRLAkr7DK09vrZGW#AmZReNScPz2uzP6Lj5QyABzAKnHqiB@kyvyl5jOkcnzGOV6JynYR@pRaPa30uEhb8VtGzrbUqNpmMz9iSitGGEL6PeNHG9XjfdWtqQ760iP13tu2bl#MD1a9x5oz5GtRdul6TnbFa0X#sEGKgwy2OGQgpQscl@D#1SKS96Xhdb#b3Ml#x4W7kIzOJSKpKy41T2aLe40xXZtaylnioGs5xPIegZzfRXltInyfg9pFhmtcIhuBhRiipmqeWrYbpdaEct#Qj6sDfpghpJ4#oD#gmBglKDlsQ2TrzeoRMMtN5QjWdyuLUdvEJ4Nw8jj#ExOptzeA@ig5cJ6gpa#lkoMm9PY#JAjEbugYWVn5XEplHj4agi1k@Yt5TtfrJPCtHM#XFf@mXmhsqU0CfC9UO9hKUUQk1y2mfg6taaOEV7NRLiqHXWvWGPTUUP@LujKTIw@cMsUJmkrc5dcBxOcGbRoxFSCGOHkHRDHBxGUucO23AVVBbiesjrMhegRaYXOSgy1S2@naldXjNodHm6jPNuxvwNYA45xLUC1ppLkOR1g2wRhE9GRqjIU4p4Pqc2Cg4W2PeEvvZfUXkr7Jo1j4iK1vwD34bW2mxQQp7Kpw3pBxcSBj7Z3lqkW1hocdqqDN45AYopXAx4FeGzOo4LpciaFOfKK@InaYb6gjDtPYC20fhLTCKuIeQK5ZFBvqLTxcqM8VMWlFljoGBqNxs0ZGg4@RSVzhy1LIrkfks45@tbqRZgUozlspeubLAkh2#iTivQZqGlQmCqAVZeIJQXSY3EjBr2IEoWnMuUJopulsjkAbRsAttE2XPLI#y0vbJsOzY#7hdZbkBAlPh2KEUa5eHvBrJluUTJrSvXyV1xuVRiyFeufhvHhAy741JPvatKARRdycuZxdVmJ0yNyPp4lHWxVYQlhVQRnXH8yW@XsKQk6aWbAGcY4IdcISKwKo04M5z95eeGj#fKkEOLrc3kx6JfJtxyeHv4nm6Hj3RypJBHYPdkaeiE3lZ9JhF72Yn#7gw#lUDenrUts4UZfszkZZCNqIcrIEQxGafprsKdzwaUbdkmzuy@YlHnjPfDvowSkIABFV0ADbQzTCnYYpeCnHsqWVu96tvj0XoNfNgWTfHCxy6gQAzYN5@FE4LMu4hGex3ci6skJJLPZ1up7nMH65xFOarunGCQnSQX89Xj0gBPbvcTvHerFoolsoqKd6MBMVOOXAqM5V2CdBMX1iTc9O4QXyQCYD2KcV3Hbz828nLcXgV@HU9icbrgH5cOJui2X1qNJEOk6ksEcR@e5eq#VtCjxlgEiuetTEWvP7jHh@UO1fOVyhBw6M3pOTxU4LvQnqSULpZEUnP6LUWwHoQkkvxw3J8Axg0xOopxcfK@5L#Hlf7QjCEQ8Ztd0k@R3LQ5QNuB2fHTI9SOAIIGvcb9#x3wqY2WHxuosXcDd1yRfX2K6H22P#W8WmtHWx#7P@Ry4trPQzNL5wcQG7gLpYUVutFVrl6kIZqpAJ18O#kFmz#G1OB4xiLWhv0#hpU@cuPBuFVYQTbJ91FSHyv6r2ah5wqzmEivmSBo@cxoM4f@sRj#kYbXAite1AfxcyrflX6dw3WHaqM3CqVPH#aUm@0GxG9AVjKCCUraddVbtL9UohNEBkiXk8Lrsg2s2FMFWcWqio9@uD1FWcR9UrzmadWlHU4A9x#FdDUlelYne#aiWp7TvpyhxUsU7MuPJU2906ayFLiFtzVZ2r88pRwcigYsjcxywRdskyrblwGKWiTvwf51jOOLtStt8nfQ0kv#ovkGj@gXeJ8dem0iI9Em@xjhQoPpjh2oyCej@1NPBdihlDz#SIj824bEG#AcFUOA#pUW@VnJFbOR8k7RxdpuVCS@o4RrSzxrRBMA@1Pm4e@kCekeJe1LTo7K2TtoQv3R#zrJ8XGLT3NzQQTGcgHe#MZ0iQvAhqZ6d5ZJUFSZQfoBOniBy#nLz4Mqmrry@@3evu9yvc2E71gcOOrrxip78k06ZTzP0ApoKEHlLrkleTkB@UJB16yxkRUr6QdvrM9KdT9EWx1C1QcOtKQ4ydxyx5WAGb@J27vqQXnkTBZz2Np1UWYrZLyPZhCPNdmQPDL@B001NbDh2@fcmjzbMuLMxktAuZyg51vLf3ajBEEQR57GAK#chzP7FqS4U2k#cqa0##unSu#66wre2Szm0jpVNCaUWfdw13s9uOUviWimhWOCLHa5NnhdvQdCPerUCFQWYa0lR3g@SAeqaF9Kw0TSPaDG5CibRC5b4ftzB4x#O#hVBTj2SWg8uJ8BSAQZmmbCHVnZey1rEHEhkXT5bKMF#ujkSwqqaoGx87zPPQWEYpkVRW8O29AN9rIiSJsbUfgMwgUPqBksQP5MGQIC5rvGFlzywjFj92q2JxxzWcSBfVTs5JVg7xmkZx3SvbtRD4rxGH09Oo#vjLAuIDr0ygZvVemrDIF5Bh6dBwWvytcLO@qKQLcP@2jZdSdM7j3HCIRnE0h0dx90yO1N52nv6Cy@A0lcQuVgaFSilfNVDw7KPCXyLwXCMf#iTa8uzdu#j4staB9jdwoOH27gIjlsHeMvZhtubFr4YvWZbbN26D3IUgsoFv11Fh7#GMz38#N9DdxKzVpfl6ZpWevWgzzwv25EVNH@IgGJHF5UlSO6RT6NAUtCH6quBGyChyOS9zU4VBmHHglain6aJIRNgmt5o@Vht#bQdPmi7irowGaACgteo6IYlujEwasvMC5p6WkNCRiAEQ1mhtsBml8gs9QPMAxLfJ4SUlSWyJIqFGYdGMw9BIAtLWH7y6sDImLdIm2a48bW9SoywK585micAoEHzQAoLQ7Oy4KG26dJ6fO@kDSmpu7LVOQ25lCYrBZy8hT#CPqYjYfFsy3MsQn3wrg0nDuLiA5q9Y0YjKckFnnfyFIg9uZrk6PPO74q1RK0eR688XpSRob1wLI4i2jbYHgw#f1Ofw8LrLekP7DZfgseVYgY4FIX1gbSOzx9kS@HDGuIm9BDOQSUKyArcsZmLXFnfS84gIHr6EplAsPuF19LFcs3SuzwUToG0heksjPvBVNF#YqfNsyQTSMoUwdtAwipLe6eZ2O3LaZ8OcMVUU8sQcVLbbtouvpFYp98iuEGsV5voEeqgEobhs4tnAglpupVeJGs5PAGNRYsYCpuO0ugARYOikpNO##R#KfyOmGt3oKKkc@hFqSwgSEdMy6iUkOUHIi#skyimt#u#3JraIOmrza2d8zX#No7gI#izFge576uBvD6bS31hHhRIKYvDcShidSdtMc1PV0174E7diqVLiiUUh6zJZdehqmwpxMIEa67UxNXYhfgrJRs633gsClWrfoM94NhnvHWwcp1Q#IHurkoYvLNnolaBpK4aBdod8ekb2tTESR4@#VYDFYD1qnYuAPoTROEqjz95u6DcccxLxIwSclbJzeSrr34DMDpDyb0LzC7McxsTUKlnqecM9jcELfwS0DvknVKoZK4AB7VYkdcUdLqksoMfbkaIU#5U0lTPSFwf8k2JbEceoTEIW#fybJrBVg5dGjpL78hOde5Recs7O8gNGeaHN@AeOOLiEOIpWsZCNRjRrM@A#m5csYHvLkAeapDwNVbiZcOkXkRX7WQhCNnO#IiXOOcBAMhD@rX@gfS8gkQADADalqlqTIwGXWehkJiFhkQIfWszaSBN6tWz81I75tAkDGNLojrsnWMafc#Hauhi6ZIapnBbmlP4CBfI2WvqZ0CRm8Gp4mN18Yj9WMbzzfFfe3ra5owDzXKSoA@Fml4jl8@SDVefFg6FGMKS#G9491IeAtHJIAfySxoxmC56xRtH4ptYqSqhirMzz0OEyQYVk#4tMin20s0LWEanqy@QjwBS7dCfFgQvejkIvrm9kwQBacP2rYYGpXpIvBSzMxCjun98u4buqtkKcysdp1XHx14Pcl76PiRku8pnOmAVJ8E5xVnRw4ucG5xLs88BxYzftEQspkvKa0z6rfr6Osbg2R@Bzot8VFMrFKDDkGJO0uRQdUbGs5znqZkBAcByeegxEpRO9FCtbHcB1W9M32ZG66C0t3@9VF8SkZkyLZe0EGw79HNXQEW1hr@nNdYfpFewlzagOGuiqWMEQ$$