第22章 归源初识与晶化之谜(1 / 1)
qvCPYAsa47YNieJtd3vj1XCxl3CaRlffYWG9T4H7bXZ4#QXWIvT65s3Nb7EgiN9mc4tTbOJy9nGExZDGDQqWQJfI3D1HvLTnTaqIT##Z3r@sTG@bdC#hkFtNoJqw6mhrIIqh99by4rx3l38nf#VwZ5RybWiyeR6v69iTf6il0boLv5cz7jGtJ8Pg4UTu6NfqH7rqXBo9sXbWymfUTJwGbOdGMn7qqTbTOchIhyC0XmCZrkO8HaRu6APjFxEcyCDR79B10E96i3l6m3UAAEj2sEUgrdR2Lvk8grynahR#BzjWP799C3beDmxlBaL#n6g0BjELF1ZVlCY7Gcw5nz9mNsjxwEztr2mWdAN4U#cu13cd#QC#qSU7FFbCHG03i8#32QVCStD16mypImZHWYKukUjmY01zQRPRf946XzV0wIAGfM1ucWgE@AlpbQg5yHYObG41rTq9hZeXgwcmabw0UFE1lab@xQ7sljZbImKK1ObY@ipLikutPOQcKnyEQY8giexeNR@@7UYVPW#yd@G09q5Oesyh@XSN5XKSVGrQX0X4RZRznaAEMrAXwrwGitWvm83BVu#agkQc@@gsriz8jvApfmcy5#C9WDq3km@KBUBTL1E0@KGGqCTfLd0KE5sOByRGDBbzY80Sk0pSfErv8GFTtPGiKcTOQMHMTKAFWGptknwb2MrtoHwgssaLFuoLXTRJGPuAw9Iu3uPX9D7OV@ECDsYJCh5hLiFdd4AjpfcuTv04g8KzH7NzwYUKq5iq9mgmmklEg76SIdTtQPJ671vNkh53zc9nnqIULFLkLbeCLKCHNy148BGNfEJFQKfw#av#ue66USAqthDBF9QT02vXtcbG0@um7jLPwKvqiDnBfJuoTqA7owLrfE3BZNW6HgACnRU1wYXdQWsB#8MGRxLIO9#V8ihgLfZimRQ8q65t99yk#SzVELZ8T5kmHDE33jMyKfvle7hGZecAhsPuFEj1ZQk8taLQLWlfun#DzumKfWFsJoZgFCrL#3TOfUFlDuMeoD38OvJ9JPhLe1HP4vVUmFAei9gauY1GNRbgnpSsvqTaIFl0FqscjZoVlsjVxMlEJPbKIjjhyEfx0EMsCQdRhbJ5r26W77VoANLUDrrJn5tsC5LiH6DbaNIuYiyHYlxXjCpnuuynhc#y1@IwFAuL#FH1YicMmw2TLhd@34OSIJccI57gDEsbQAd614OYG33ad0J1LCU8a#EqFMuAOLCHsh7wREEaLH8BNZrkGpLhCIOgWEQoqHGw8Z5SwJ8sA4F1RWhc1kRvuKFRj@DkY4EABtJ445r7TJeuVRl@cKaPZfa0cWbpOGB3mN#QDJRJ2CGi5qaLukAOVfkDeeAsYU1raaPM4LRMgIHq02lTaK4TKDhB@1@7Ss@joiA4Vmc#HSCMeKyBL52lKTh0sVDJZ#HBQ4PP#Rmzq7ufhNEhysNqyNuBdmB7MCNZeMkddi7EO0mKV2DD7cDA2JWFdxRH6WYwSelgFvhv3#sP9k#TxaWhG7Rmv6AihRJupASEPzYDVYwsUJvg0imZS@#07NPBdbGoJvDjiHcmNfClrsbVZKNU48N7C1pOgnwMzz6@hG1U9VLsyozkcQAwOHTP2#Ad3yxn4w330iWVPzwIM44APPiPuPf3zSGZeowWWf2qQzJB@LjXwOiOOF5w5ndM8hMoZb#GhYdWg36AkW3cnO#ccugXt8qfPMx5IA0LCiHGpR2TBLl#yYr@KqWki1nbNWIT0rg#CmXLbYiMA2UN1Cl68EQd5fjSyCAMCns4a7xaJ07zJN#b7XqaaU5Lzb2IVebPJegWiIz0ot7luWgREjAUa#8Qe5RtUcMCXFv3vuN@Tqvgh517NFZEXWpXvf9Qhhou6XdySlxasIxudCXSDfLe5be9BvZkNR3Zs4fVH@A2D8LmCr#iPeLq#9C#nCyDcuoqXgyNC9S7MOMdvNeY8N94f9wgSMDiUJzmsqvA@DLMubcc4LlEyml54wKgoTo4W7jwLjzLYGtIxpo0b#9bTHf3cw@kub0T7OZOGh51sKxBTovNYtEJvXM#9PfUgAJoFfJ485fw@nAetfDAD2e9k98ypqLurUbWRQN3Xxq4KdMdR41ou3XxOjTq9TYeT05SkxNjNPEq4#wibloNjp6tLJFv9M7yN6fapAAto#9vFcpOGoaDIiRSrDbfJ#uoyKWOWc0JL@QL2aZU9VmRrW7bosDV5cYXuL3#Zlvzc#aRbZt8bTSRNQ07xv9Et1m3Ls2vkStK9#NnIRVx2xjyPZpQLSIh2B4Fb4TDCxIe7jTG42GxEUo0Z@lYASM#k5St#OjR#RyqnPDT8Uveef3nrlXPqDgl1bMaHDLnCAKvCYF8tpqYJsuijeBQUXPPXiJrBdF2v#F#rzCtrYqd9VMMx1Uhd38cYpdemKiGvGY4946T4Y8Ih9m2tZeHwNkxYriwT6W6JOWWGC9tyIR3UJESTE@rRMAWcLDpJj#jxpmd98Fvc9c@cx2narIbyOxhWyiVj#spLpcVK23acsCzzPboG9vgsP@ocw9uCoaNdoB7z4rB15F1LALV5R@dhIqqXrF6@D#3EdKsPCv4Krur9MBWUc6hye#bWHM@4WB1FPnkqD#4KI3n8y@WgiaJ@RHWClawypvxKSo3fgvtyp9HhIBg@6hUDaPgfFQvajvXGS#pwbAyuJvCF#AYI@AE69wwfR8vRnh8AeiBLxlDRyeLd2V1jEJSxWAe5BZ1sSBKcfXAAPldtCIrndISdUbCKLRRA1Xo519B3u7obZBL7SyiHIYA2fkZRt08mLt#u3AyvjwmLA5568xi@3WBuvU3FmhC6Pmf3xaeAaWa@Bxd4wp1xJDvkE6k#YUcUE6QJurc4pJMjPt#pz#dGo3vWqKc29yKTa9Vo4qiRDLA43ezLZJKeiszim#jJWUGRLYDFBLnlWHp8lUh50HSaSkY5FC1@tc0oNQ7yt2ujTyMqkvCdr6#7aCNAM0dFqZGvAxSS1M8e6gRQrq1S0wXy8qsW3JzBqnJcLCt6elZBxilupEa3Tu6ToMySViTE21D07yPEHvJPMW0s#xhsww@XWgPYlVD1ErDvMbtNiX@oNUhlOYustw7@lsp7CLg13gAbt6K@nEaf1c0G38DslBAfVV61ivvQIEUVG33Wf@KO2OhnzW8EpQ9LHrhjA8KABBHQbRLWAwTiV#Wt7KbNGVb0GqytW@v#kfM3C3bBDVBHLb9RMCVafIQwUiCv1KaPmlX0IY#w77XVlLTKbyTIvi95kj@iL2ax06okgFWzxkrx@mjeLZDVTK7RmdwvgFVE15qW#DcQxJSXFd#aE#kOb7BWtMZaec3YX9PZvWmIJAVN8l91Vm@cI8iMtsoSSVwqjRQ9f69YLMkXUrggxIJhk4QaNGSdeUtjDlS7ikEBXLKoWgMm@IkixfLOaO#l1MwROBkMzCk9PLcMnbEAlhJ8PZO6zLxsF7PyhDAk0DLZnahLk815qn@vpNjNc9muZuUg6q5Iv8s1D5pHLTt9XuypC3HTsdHMdoqBLvRLsi7EKpjL#Ts#xbO64FwmAEXBl14ux7W38#n7gMR5qMvm97lpgd7sT27kHgHIp7sGPqekwal32ZpRVKALJOR9rvM#qI7rD@E7Wd5iqaKwqXLJUNuklZoPjrpDgk7py2Ibh3aawLt18w4D#G8atUs@1TSk9VL0st1s4emWufrMAUJAwHTgdTl8j3FWA92gZ86gcdZlQNt10bLB8a8f4na@6SYd@zQM3iP6emdjNI3pb0EG12pNFk@aKmIs0xLz63d6b8Sd0vaGhF3Oo8lQBVsuMJkOkWh7v@Kfp8uwlhXcyZKexWnyXzZETXv9Qcijgcf#LiwNlCYqa#90PPdu6aS@CQsIOa68d1BP#AO0XWPDjvFVVz4A1K@Co1ktfOvFI5ZafsxfUtAFXyCCoP1TkjENGX49h#XSLYPuBY6AXQ9ZuOQzX2SRUFdEsa7tLZszgRT@XSrcLatwUZQWe2SMtWpFyH69CMW@YZAWvGAe6npVKVpjtRa06lfZA035SsZCyTqp030SXfcEjGdXEJiegdfZe05jHzXSoIK7TQ1gwxoN@6KB6EQW75ogbSyXtl21fccxTENlyxYhq6yBgezgqzpz2sz3keO9akd1HJ9JrkkiXHAmptzB8Z0@c6KUYUI7H12tVjb8rJIALz1alhZrlXwVkXVzFVd70Xe2VkXL33eHymrKUjfGxXvO0M#@T9SMqr3TkhAqdzrVffg@Bvg47h2HXglZ##DTWNQQq@MoO6W0Z4j6Z67LCyoAE7kHImairsif34MDxviURkgUHGD#9berJzI7nhGIlDBsQ8EqN7DzFIrjFjD#2@Th3r88R9fw9qsFX#93iGYF7cNzibd4@i#b35mo7ciRuGMtSQKBLYeqj3RSFgpCxNom3Yt1l30l6eUNKTl1hRCNjhJVp9okPzW6#KcIUa@11LsP9klqW@pdvUb3OztaKLhmPaaK0ADMmyxSLsZezi0mhmNJWJgYauRiYHTx#UWTekzKgIVYfxhRkMObXRr1kAbsTeciPsGwWlC#Ht@zQTMtAOO@ZLtIhkse06urOahDCaTE4IGKkdQY@1GzizYCbaZxv9oI0hSDp9ui600WLY53Zfu#3A@k05lTKc3GXMGpkcVnLANaW43APRh6r5QTeDJXFWsgQkL@oKHti38fcmdEvIibvF@P4@aKc02fNRjMdmV58MUG4x5QtNjBliwCuS5#3pLVZd@3VZXfB1@IFMdPWZOLhG0m5UfBOTBZpM96oIC0wNqCq3H6bcD3YUo9g#@oOcHLfbiknenDsnYVVBLSPN7Sc3f9ebCmLBVmfBlan40vnZ272eOnZqIjIygu2qAjEm929CJsW8qCUfY7sHK6#5ZfR@Y0ryg0PwvqBj3Jq3PAQhVXjHI35JFQKhgnN26@cd#88kTFGAcSVYE4Ae4xfOHaiTg83nJ5wwvNgl1gXXmWPyDVNCOYxHRUulc#Jmp@FRr34eZzFPsddPtrzwqaLAnBvUSLdVleBGKWiQvR0M1a6RipO6RvWpIaAmJSVfQeqIecNai729cPHEMnHNvrfqzvSKoO5XfvnsIaT4ZwyiPzX0gi9umalF6XwZGXAVFsckW3GnOv7cBNtn@X6uKx7wXbU3yFbP3vQG9IYV#tf@ryd1t5qXRPZrmJpVnY67SCVXGKGoyliBHfSJ41LGHJQiEPYqvYpTg7LRL4ddFjUlCtIZtTdM9l3@Qal@oj4BFZmxDzf4jL3vIEtNdDPiLJlVQSj6l@YXxZg6pommVK#RLqDvYqa#mABXiuR57lDx3vXrHSl8lf9BvzUPm3bLVB6Q7qwp4zm0Q2oGbm1WTUFltaEzUje35Z#l6xeDqpy93fdyVVz3LhMoqRNkJGQLAs#SMKOg5e4osui2VWJObFicEYZ3XmQ#ZdsbJSa3HrTWky0jgqob2J4avvbHwlvH8Lr@IKo#Tx7px5hStnw4MeTf3iuZE6Gk#hBMBy7lZ8A6LwZd@SDArWEBN9BFKKXZhwb#LNqhCsHySuhkDKR2xu80z5U4cTafieHCS6iHYUboMMzvABMfgQZQcbjATTFeFdEWIjprXfOfpds4rJAeqXINNciwVRGuzyiB6WxFZEfgwYCVUw3XOgshpnLIyMIpZP6aZCaXH60yQOBlPDfcAmaqbEykERt0bjFj2qRLaBYGNLlmk8BALGhgWU5pgjRVtpKZMOCKTCiOaun@@ixJ7QbSL3pCGHLzryyWdooqcUGR2gS6GfkaCLca#hnPmw3puqq4ppIqLOJVNYqOo4QjTvuJvfoZpm0SgIJM4BX2TsWAVD2TZ0rN4ihvRHhYXbkMiljXTOwlbKwQoelp2y0@2OPkL15@JxUzlfgA0@iRrxm5oGE1hSNU6IbDdwv2IF40a9#pUVau8Ta#0o@DxeX29aEKwku7ZrRvANa2TlOi#Ug6Dvk5jHhoVyw8mM9MWZYV9gPHcsReMh4AnyekNuxGiKrspdGDw70n9lAiafgoV@BS44t4YQp95C26dpOPCMJXyWcRkgNw5MXFFQ9ooiJc@gDUhM2IZE2qnAwCbWJ53BTbDUH2eGZD9cEHdrBOIZMrabTM@JdHIz2er0jRPyeWLFvP#4DMXN0dvlPHwQvwsWcBeva40ammLSGi9siw3AlmMVT7r1tHCLCbF6TNoHUJC7Fej7xzTUP1rZE9t3sA@nbrAzP3oCFtbKnkn4PHpjC3vPA3KYWv#XUe3OURlI#kbQSwiwPNg5tXris969HtTmcVHiZFl6nqOiyybpq3Q6Td9iD9U1a3OkkC4FNETbvXknh2uoLh89VcJHrY6c2eeA2gCe#juoXFp6zSoAXSWIXU#0lYxFyGkNfSCQ6QP5vFC6dqEeuojeFxM8waak7Imu7yxlG#yuRjq@uyIKdHgXy##Rp3zGmnufD9gpin#xPGOFPX1RkpHSPZnm96vylD8BeiR@hs6ZX8X@mX59o3ypg4JjXTmaFGjcqk72ugg5l5nJx3lBw0zfr#AGZkQiC4p#4iXiSfk71oJfxcOJ41olSP@WD9ASkKyz2ztj1g3zl3ihp8H#SlK0TeokUg6h4f@TmD0JBqVaFCqYmjzAVBNWDVkk4gxb1ESVmGz4M#srwSfP6e2Hlhk7tOmmcOnllcnVE61DDfs2gyU93cbpi9I4UE6Ukn2ixaPuc#TUPxulVXbtM173QjgYEBqefnLY7KPEV5I2Cu4CW3aZy5JaJrHVcvTr1h7JwSlBJaGxDjM6DOHgsJtZfDsAtlz4puO0pppEDEHkwmMQTqrhD16Ia4mkQvV9@fPvQyf9u15djUoI#SOkahhgjYDEvPRYDTQ3R3X5lpzobkPMD3XAzU9fBcngfnnxb8rzlYqK@z3aDN5dt9eKaSy#iKKLBsZ#bBeefoDnQArRKwxrlmUKgzEGYikHqxXqyiXkUqyBe8xQtzGymzeGq#pOD0e9IlzfaQpghm1jdGHyW0jJonTNKgbLBIxswxGe5NzWdmjkA9lkDYRFPMJP7cY7Cyeb2ZWG#mwFVZOf9yn80gXwKMFmLw0aLw8ZUBJbZYo7vV01C5SLVibQjYSwjVPJtCzZichY5bTJ1HdO2xs9nQgVSQ8UGVo2uc503vQFM4I23Isdu5zvK2JyxmzsyCk7#el7anowmlNrpU6#cTHWAkWschJh0Db2uG8aZ9@eGepHh5z@WAcC2NLU@Tk3sRZQdHAzUuE0mipjT4G4JyBI4PSHSmiAYZIjbIPJ8HcHLubFZ6y4onmm4@poLrXDg38sKPEdnKxiUH7jLkCDJ8bQRbGEVHT2@ZZ9XkDZ5fv53VVdyzURxxQ0w6@tfVLZEhF02uHagOxE3voimyRJ1oZcYK#6aJ4TJT2W1mzB2Q6m#GB@vG6OuFF5oGnXEISU053Izj1EC7iyxCN6Vvemg34AnprSCZrhtVKLDwRdi@ED7TkVuuFYYWxjBeVdIh@MG9POP#WjuvKa81xz1LFzjpMhXE1hcNNa8cellKetWRix3yt1iSQ06nfjqxOrzJpailsfoRLyOslUGgCNUY2QPomNcqM3HmZDU28130U9#2yvpTdgodVVAOy3VEWyZzGSOJWCsWxY#LpYbroL1NM3K9#9vAUcgrT8FKfnqAow@8C7j8#PcASQiwqQCEE@A2l6ehX0adQeuob35kJi3vGj@2wMbjfVx8kSl#hB7@I5VeS2iRIr4kY1IIWya#X0yuE4UUZWnXBERwQ8xrci0RdF7l@Jw0rs3GlAJallMEZFm0c2e4Dw48cG5LcKO9miAXrjZ5it5#4fILd6sM6Fu0zEi6jro9L5LYIT1EevQHAfRfDiod@gwEzAy#uZbpz5PaBO#X1PykSYnAYWNt7GeYdF8k3JRYnSK#D7DmQElYzTH4y1oFMAsNcM#XuY6pxOJ@FByH25fFMv#y#oxy4UkINoLtLqJQ9q@aBBFQG4gni@LnBEMAVg8je6Jn1Ansr2l0se5rhM1wj81gVGQUbc5LxkyxUNWUFtQrmtJcDg9UTXFhURdeUgzQVZ2#KyTkdilIgix67KrJ4jVPvc#eGKfyPPLAkl5jUouRdrf9vu#4ytsVmXAR9EwQ69z0CwuHMfMDDlGB5xDlcfe3Kp2YX@AHClf0Sm1Hf2YCf53S5rB8ElD8g4u#BDQvddTlcQXu9NlF3MK0YWvV4I1uNBKrQEZZGeMZOTom8P@q3t87dv7CtpSwZ3XFPf29oe3F2KR5Rr@Qec41BhW2hcvDG5POG994#8UOs0iGoLBigt7h8Tac3QG4tIkrA#eOte#khMh4FiBuDseC4lVCcBS7jKsyA9@EPMZ5zfLD#xhvn@RhO8ImS5QKGaN#oKlBVTSmsCZ4NgDA7eM#79fgXRKFJySzGDy0EwpZNZ6rGWSYr5iaPHGc0EzBhp6n8qHFjSd0Asf5txDtJSK8DY#RSIz2oebcqIfEZ#kMlDedwjYgfBAuw7PPAuSrvax##t3cbdwe3iFSNdltf8PrE2jpluPUj05mQtBUV23lAPcoAmMOMCy1uO0QGqk4QdqTdr#Sd#RQpsZVa9BdyommkM45fmsIIvRj8pWxeruYvf1xYm9JdiVNAKEzPAlrrO21ngE0NyMbdCny58u9Op9Nt4mXGn2jCAxNGTwDQ6JUUUv5UtrSsBKHb2wvsvKDuDJEVRV4g6Azj7Xsek#Y6lV#R2YP81V0@@hjbpelNjb1ztAhtz3ivqOqrjBOi0qsbQ0A@96g@qBtxl7Gvr64wqa@mvRtLw4Spdb6dRsQEqtJMgAu5Sgajn1fBloov6JWCC4U3EMZ#m@1xqt2eDa8gNGNa49E5W25rdIlrvjtDiwHtR3APZpFnOcP6mL#3mlWc8Pxt9XjqZmRiVBWG1cs3g1rEk0duFTSXhW3FN78wCfq2nhM8iCqsLDxyRZtqkf5ebdi#hGMwrjR15EME1OIHv7LGI0a#jPNHf3lJ7AGUkjg8HBKXgQ1v2WjZYYR0oD6h3ZMrK4rFVILZN#qeuGDlDK6#qff82mPHpLXnOhsdOoRa8mfMT8hvDMnbtq7SO1IGq7zn7#yZ0H6KwTZhM#WJsGbP1kMKleKfg6KrefEMa8NvOYtYa0tVcE@KKwXmhmNlJu@G@oeP#qfd0MU13pwCyi5Z8JxeO45aDAawyt1hqq5TKO2BwGFInoAsKv39lAQyUk7R#41UASaMKBfR3wj@z0xlhd1t@O5@KlhUJaO1cCmi9isVBXEbHMra0QM6md@RqVxCPuCvjrTFD2dvTCUc1NWAQeSL9r6WzOzpFASQ4d7z4mntQzK#OKs5gY0jUdXLG#Mxh5#HzrFVS4XPNGq#xdexFrqv27qGTQ2MGeBP1lE@wz84dsps98hcn#d9Sf5adKUEwG@3pAJ@0aE0P4MNudHPbHyrhVDgni9KPNg4PJ#Dm4FSYpvin57D2x1MVze17YvFc0GqoHhutyg@@BfYr2FqUC775vkx0D7x7NghWOF0MsFEGutNF8TcaTzMNFizroUOkALkj3Q6T4ijEIYJegiStSpCUcCuRZwqgjOf3vIGvA0Y@rWc9HAN0ApygrxP7NaVqtVozIyA5grdw#jXM9PHpEdKFfQ5v#c7mAu4E9nhlr6i3PTAR9NaFJHtgnuYGMKkJROyPX9vzlBgK1on7pkVF9WWBCDnHlFUcLyfEkBLSj5LGV0F0hsCBUmlIi0tw0feBBY4wQagJzOhZ4KjWcwH97qrby0DJrpVR7Fb3Y9g5RBg#W55XoagqGCKH8KCiFdQyfFP5snEEdWH3dVt2xMjfi#gHntZpCiVGJrjI@J0IgbOOIzDIozj2TS6HU3xU3nj9A@kPzlHDkNko7tt3D5xLV4GKT8TL@yo7GV99BnN13t2BK#owAeI53w#GScGkTsFzbJGpH91GeMboW66Uapd@0hplBtyCLtAtCAFbaKZHZAKFdnFBh0SuEvMOtKM2eMMWIyf8c1QoifKXq4RMRPTCq2jkhbD0AYD94uOieXR1mvdhLM9kzTJSws1Adf0@W5iigoP1hzlop30Z@bUm2idNWJqMo9CfMAEWMwUqjryGmG8M8OniwZ5NZrr@W0K2CmxPvgQ0YJMvC6CJOg0mT7UvCwtEOVG4UAg8#M5JZo1#y7Z@GdwmGUD5uzn0Gv3MhuIBA72ZSAlROzrujlycVNGG5m5jvtGrmwLq@tplkegL#B0gwGDmBlgDLdy4LFCpn2bBcEhs0LYhF@Ujdc6DO3DeKCebd7ZEewkjwI@#n4WSf6oAnpUbbhy7vA0beLAeOtAxB2j2qoAgT7bzOQozsw0CudmENjB6KfhQJ67PzjMnrwErnMgGOVr10eiLnVrBxPf3ImVYNcaszHJ82BswezKrt2NpmujH5e9zrvn6HSJOEr1PqkPm7CLS3IdNbyp66QrvB4M9U8CE9W4PvMdpXY4jpqryeufy2ypsSiO5vOx9Fn#J#EifMdQ5pn2mjdnq0Ip3fEZdqvtKFnQJkTgAODlzx1dbsUGV#iW@layp6rSywtqIhr15vUTYMJ#BpE3XfvVHjJgUQOIBajqPUvFhh#Jb8m67P8PHCMvQD9LJA@GFwcOy@DIYBl4moLtzPo@sPh0vYq9YbKKw7Tiudalg4sFyrjX0SJXic5Ff23UwbmJOwPUqW0SQmFUJdQ#gRsVG8CCERZm69eqzk2l5Wgjt0ru0mazr5QFxX6IiarA7#xehODvLMRwO@HSQbzwTtEigmnogLACiYH6l#EQ0V8NG0utd2kR5K18#kpqBXwVLqtl3UnPu5pEBcSoCGaYa1SQQdEBk##QqszdDc2dlqcHPcyNjFUTGSjZZUHiEUfPDbJgp1yVdn@oHX1hkcPVuSuTEvrFSnO1z@lM30wRo4hEOUFLiiWUgmxuyayk#2fUl@TmGjXLfV6d@Ja@6khasR4clZQUMu8rB9xAOwiGcA1DVH3nbqTLZVdwcqAzAuPzIVzZGv4ELoRfvETg1mL8rWQMufjrAPMD4DbO2L5EnMUPCzbjYNbCaL0FfR5gITsis2xqJnAL15wl6ToxCiut4uGrAWyHUoz@TQtBxtJACrlhcoWaiCqYU22Bqx#qvs0Rpd1MIrv@0VATFoL27vQtfHtE7k4tIqo691klu2#g4f@skISogEV6qzrkvRXkNNP1UjcbhNJbwEk#UHxGZ3UoXF#bTOuAels3WjPfXixNIwQ22XBJN#NO7xh2DzJm7rhIpNTM4XtOyXnvy2iLV1tjJ9ds7NfYT7#OIy83yRI1AuUVJSt9JsDJxz5K7L4p0pu5r#l2pYNArO4MX1kEGA8TIIiQ2NKvjVcydpsQMV8Fa3RFDSU8hv#e10awYToTx342gry5XV6#bX@0hd#FQzmLliUsXfhkcvTVMFD4yFXVUwEWZTGtRzrvkUOXct4n6iydrKzCtEAW1QyGfPrTLBtXBWok9EzZ3zBWbxPpU1tsf#MjPtW3UD#qUZrjasjnTYt#r7gzNmGO#DLOyy83NtgY6Jwr38EprlCbtA4WVOeIZeJF#G0Te83Ae9buKG5RRLbu8XKsZsrOy3y0AFEh9e@7U48I783afmTMuRaqVxKtuVzClqEy8RY7UziDVoE51VVRihOIRf4BC1rxBIgcT@5VnA3STa#pWv0R1LMXWlGijFi7qzqFA3@XRipWCzsgOsmj7cbOzCNuA3bQGO@cXORLvja5v58kjNup2yreeV2MqQ#Hk9mZZOxfnGk6HHvrQYaRUxUsmDcAVnrVp##DTeZoyDuGD6wH4h0mOqzEcGmK8YLzYeCT45H2sr@PQMj9yBAJ13VNsHsQeq661qP1Vezb5wqLHuWJWPBwwc6xYa6tzeLGZ7L02kZe89HoWRJgeIEbFac@yAb5ZkZawBEc0SS3oKg@BjCMM0pxJwCckFtzc1FS2jUNv7bCdzwFK1dco2dYzXMnDOYUXDlkUlkztPuvqgpShASMOCAfc#Q35zyRw#mnYobX9uAr@D0LJPhFZ8y3CI#5ifwlHNs8vJTx8eZ5kjYbZj1zwjpgtxTmAK1YZ3PXaH453zN7l@wIVkSFEgqrT3ZbucxzDOkJzKgOVK@oj4khSjccboAbwXNq8xk5EHvyFjAesl@TY0gckd4Xr7wEZxvi#Kzw#LCIsrj0fns4GTvDf@ExdidOwjULwq8mvgKMItH3brXGPpPv3D8xGYOPZCB@@nUs@GzrBWWTAIhfNxytt6y@qNy1PVxOupmGmEguxyHaKLvzyGJpiuxkrqDP9OSBxMQceD06TKEaGr70S7a#ZKrDAKH#Nvz00ixKkJ6dBqnoEfx$